Adaptive Neural Network Tracking Control for Manipulators with Uncertainties

نویسندگان

  • Long Cheng
  • Zeng-Guang Hou
  • Min Tan
  • Hong-Ming Wang
چکیده

Abstract: An adaptive neural network controller is proposed to deal with the end-effector tracking problem of manipulators with uncertainties. By employing the adaptive Jacobian scheme, neural networks, and backstepping technique, the torque controller can be obtained which is demonstrated to be stable by the Lyapunov approach. The updating laws for designed controller parameters are derived by the projection method, and the tracking error can be reduced as small as possible. The favorable features of the proposed controller lie in that: (1) the uncertainty in manipulator kinematics is taken into account; (2) the “linearity-in-parameters” assumption for the uncertain terms in dynamics of manipulators is no longer necessary; (3) effects of external disturbances are considered in the controller design. Finally, the satisfactory performance of the proposed approach is illustrated by simulation results on a PUMA 560 robot.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Saturated Neural Adaptive Robust Output Feedback Control of Robot Manipulators:An Experimental Comparative Study

In this study, an observer-based tracking controller is proposed and evaluatedexperimentally to solve the trajectory tracking problem of robotic manipulators with the torque saturationin the presence of model uncertainties and external disturbances. In comparison with the state-of-the-artobserver-based controllers in the literature, this paper introduces a saturated observer-based controllerbas...

متن کامل

Adaptive fuzzy sliding mode and indirect radial-basis-function neural network controller for trajectory tracking control of a car-like robot

The ever-growing use of various vehicles for transportation, on the one hand, and the statistics ofsoaring road accidents resulting from human error, on the other hand, reminds us of the necessity toconduct more extensive research on the design, manufacturing and control of driver-less intelligentvehicles. For the automatic control of an autonomous vehicle, we need its dynamic...

متن کامل

Hybrid Adaptive Neural Network AUV controller design with Sliding Mode Robust Term

This work addresses an autonomous underwater vehicle (AUV) for applying nonlinear control which is capable of disturbance rejection via intelligent estimation of uncertainties. Adaptive radial basis function neural network (RBF NN) controller is proposed to approximate unknown nonlinear dynamics. The problem of designing an adaptive RBF NN controller was augmented with sliding mode robust term ...

متن کامل

adaptive control of two-link robot manipulator based on the feedback linearization method and the proposed neural network

This paper proposes an adaptive control method based on the feedback linearization technique and a proposed neural network,  for tracking and position control of an industrial manipulator. At first, it is assumed that the dynamics of the system are known and the control signal is constructed  by the feedback linearization method. Then to eliminate the effects of the uncertainties and external d...

متن کامل

Adaptive RBF network control for robot manipulators

TThe uncertainty estimation and compensation are challenging problems for the robust control of robot manipulators which are complex systems. This paper presents a novel decentralized model-free robust controller for electrically driven robot manipulators. As a novelty, the proposed controller employs a simple Gaussian Radial-Basis-Function Network as an uncertainty estimator. The proposed netw...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008